» » Строение и функции нейронов. Структура и функции нейрона

Строение и функции нейронов. Структура и функции нейрона

Организм человека представляет собой сложную систему, в работе которой принимает участие множество отдельных блоков и компонентов. Внешне устройство тела видится элементарным и даже примитивным. Однако если заглянуть глубже и попытаться выявить схемы, по которым происходит взаимодействие между разными органами, то на первый план выйдет нервная система. Нейрон, являющийся основной функциональной единицей этой структуры, выступает в качестве передатчика химических и электрических импульсов. Несмотря на внешнее сходство с другими клетками, он выполняет более сложные и ответственные задачи, поддержка которых важна для психофизической деятельности человека. Для понимания особенностей данного рецептора стоит разобраться с его устройством, принципами работы и задачами.

Что такое нейроны?

Нейрон является специализированной клеткой, которая способна принимать и обрабатывать информацию в процессе взаимодействия с другими структурно-функциональными единицами нервной системы. Количество данных рецепторов в мозге составляет 10 11 (сто миллиардов). При этом один нейрон может содержать более 10 тысяч синапсов - чувствительных окончаний, посредством которых и происходят С учетом того, что данные элементы могут рассматриваться в качестве блоков, способных хранить информацию, можно сделать вывод о содержать огромные объемы информации. Также нейроном называется структурная единица нервной системы, обеспечивающая работу органов чувств. То есть рассматривать данную клетку следует как многофункциональный элемент, предназначенный для решения различных задач.

Особенности нейронной клетки

Виды нейронов

Основная классификация предполагает разделение нейронов по структурному признаку. В частности, ученые выделяют безаксонные, псевдоуниполярные, униполярные, мультиполярные и биполярные нейроны. Надо сказать, что некоторые из этих видов пока мало изучены. Это относится к безаксонным клеткам, которые группируются в области спинного мозга. Также ведутся споры в отношении униполярных нейронов. Есть мнения, что подобные клетки и вовсе не присутствуют в теле человека. Если же говорить о том, какие нейроны преобладают в организме высших существ, то на первый план выйдут мультиполярные рецепторы. Это клетки, располагающие сетью дендритов и одним аксоном. Можно сказать, это классический нейрон, наиболее часто встречающийся в нервной системе.

Заключение

Нейронные клетки являются неотъемлемой составляющей человеческого организма. Именно благодаря этим рецепторам обеспечивается ежедневное функционирование сотен и тысяч химических передатчиков в теле человека. На современном этапе развития наука дает ответ на вопрос о том, что такое нейроны, но при этом оставляет и пространство для будущих открытий. К примеру, на сегодняшний день есть разные мнения относительно некоторых нюансов работы, роста и развития клеток этого типа. Но в любом случае изучение нейронов является одной из главнейших задач нейрофизиологии. Достаточно сказать, что новые открытия в этой области способны пролить свет на более эффективные способы лечения многих психических заболеваний. Кроме того, глубокое понимание принципов работы нейронов позволит разрабатывать средства, стимулирующие умственную деятельность и улучшающие память в новом поколении.

Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций.

, являющаяся функциональной единицей нервной системы.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ-ными .

В зависимости от числа и рас-положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со-стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото-ром протекает большинство син-тетических процессов, в частно-сти, синтез ацетилхолина. В теле клетки есть рибосомы , микротру-бочки (нейротрубочки) и другие органоиды . Нейроны формируют-ся из клеток-нейробластов, кото-рые еще не имеют выростов. От тела нервной клетки отходят ци-топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово-дящие импульсы от перикариона к другим клеткам или перифериче-ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо-собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах — синапсах. Вздутые окончания содержат мел-кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми-тохондрии (рис. 34). Разветвлен-ные отростки нервных клеток пронизывают весь организм жи-вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней-рона к нейрону или к мышечным клеткам. Материал с сайта

Функции нейронов

Основная функция нейронов — обмен информации (нервными сигналами) между частями тела. Нейроны восприим-чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру-гим клеткам (нервным, мышечным, железистым). По нейронам прохо-дят электрические импульсы, и это делает возможной коммуни-кацию между рецепторами (клетками или органами, воспринимаю-щими раздражение) и эффекторами (тканями или органами, отвечаю-щими на раздражение, например мышцами).

На этой странице материал по темам:

Человеческий организм представляет собой довольно сложную и сбалансированную систему, функционирующую в соответствии с четкими правилами. Причем внешне кажется, что все довольно просто, но на самом деле наш организм - это удивительное взаимодействие каждой клеточки и органа. Дирижирует всем этим "оркестром" нервная система, состоящая из нейронов. Сегодня мы расскажем, что такое нейроны и насколько важную роль они играют в теле человека. Ведь именно они отвечают за наше психическое и физическое здоровье.

Каждый школьник знает, что руководит нами мозг и нервная система. Эти два блока нашего организма представлены клетками, каждая из которых называется нервный нейрон. Данные клетки отвечают за принятие и передачу импульсов от нейрона к нейрону и другим клетками человеческих органов.

Чтобы лучше понять, что такое нейроны, их можно представить в виде самого важного элемента нервной системы, который выполняет не только проводящую роль, но и функциональную. Удивительно, но до сих пор нейрофизиологи продолжают изучать нейроны и их работу по передаче информации. Конечно, они добились больших успехов в своих научных изысканиях и сумели раскрыть множество тайн нашего организма, но до сих пор не могут раз и навсегда ответить на вопрос, что такое нейроны.

Нервные клетки: особенности

Нейроны являются клетками и во многом похожи на других своих "собратьев", из которых состоит наше тело. Но они имеют ряд особенностей. Благодаря своей структуре такие клетки в организме человека, соединяясь, создают нервный центр.

Нейрон имеет ядро и окружен защитной оболочкой. Это роднит его со всеми остальными клетками, но на этом сходство и заканчивается. Остальные характеристики нервной клетки делают ее действительно уникальной:

  • Нейроны не делятся

Нейроны мозга (головного и спинного) не делятся. Это удивительно, но они останавливаются в развитии практически сразу же после своего возникновения. Ученые считают, что некая клетка-предшественница заканчивает деление еще до полного развития нейрона. В дальнейшем он наращивает только связи, но не свое количество в организме. С этим фактом связывают множество болезней мозга и центральной нервной системы. С возрастом часть нейронов отмирает, а оставшиеся клетки, в связи с малой активностью самого человека, не могут наращивать связи и заменить своих "собратьев". Все это приводит к разбалансировке организма и в некоторых случаях - к смертельному исходу.

  • Нервные клетки передают информацию

Нейроны могут передавать и получать информацию с помощью отростков - дендритов и аксонов. Они способны воспринимать определенные данные с помощью химических реакций и преобразовывать ее в электрический импульс, который, в свою очередь, по синапсам (связям) переходит до нужных клеток организма.

Уникальность нервных клеток учеными доказана, но на самом деле они сейчас знают о нейронах всего лишь 20% из того, что те на самом деле скрывают. Потенциал нейронов еще не раскрыт, в научном мире бытует мнение о том, что раскрытие одной тайны функционирования нервных клеток становится началом другой тайны. И этот процесс в настоящий момент представляется бесконечным.

Сколько нейронов в организме?

Эта информация доподлинно неизвестна, но нейрофизиологи предполагают, что нервных клеток в теле человека более ста миллиардов. При этом одна клетка имеет возможность образовывать до десяти тысяч синапсов, позволяющих быстро и эффективно связываться с другими клетками и нейронами.

Строение нейронов

Каждая нервная клетка состоит из трех частей:

  • тело нейрона (сома);
  • дендриты;
  • аксоны.

До сих пор неизвестно, какие из отростков развиваются в теле клетки первыми, но распределение обязанностей между ними вполне очевидно. Отросток нейрона аксон обычно формируется в единственном экземпляре, а вот дендритов может быть очень много. Их количество иногда доходит до нескольких сотен, чем больше дендритов у нервной клетки, тем с большим количеством клеток она может быть связана. К тому же, разветвленная сеть отростков позволяет передавать массу информации в кратчайшие сроки.

Ученые считают, что до формирования отростков нейрон расселяется по телу, и с момента их появления находится уже на одном месте без изменения.

Передача информации нервными клетками

Чтобы понять, насколько важны нейроны, необходимо понять, каким образом они выполняют свою функцию по передаче информации. Импульсы нейронов способны передвигаться в химическом и электрическом виде. Отросток нейрона дендрит получает информацию в качестве раздражителя и передает ее в тело нейрона, аксон передает ее в качестве электронного импульса к другим клеткам. Дендриты другого нейрона воспринимают электронный импульс сразу же или с помощью нейромедиаторов (химических передатчиков). Нейромедиаторы захватываются нейронами и в дальнейшем используются как свои собственные.

Виды нейронов по количеству отростков

Ученые, наблюдая за работой нервных клеток, разработали несколько видов их классификации. Одна из них делит нейроны по количеству отростков:

  • униполярные;
  • псевдоуниполярные;
  • биполярные;
  • мультиполярные;
  • безаксонные.

Классическим считается нейрон мультиполярный, он имеет один короткий аксон и сеть дендритов. Самыми малоизученными являются безаксонные нервные клетки, ученые знают только их местоположение - спинной мозг.

Рефлекторная дуга: определение и краткая характеристика

В нейрофизике существует такой термин, как "нейроны рефлекторной дуги". Без него довольно сложно получить полное представление о работе и значении нервных клеток. Раздражители, влияющие на нервную систему, называются рефлексами. Это основная деятельность нашей ЦНС, осуществляется она с помощью рефлекторной дуги. Ее можно представить своеобразной дорогой, по которой проходит импульс от нейрона до осуществления действия (рефлекса).

Этот путь можно разделить на несколько этапов:

  • восприятие раздражения дендритами;
  • передача импульса в тело клетки;
  • трансформация информации в электрический импульс;
  • передача импульса в орган;
  • изменение деятельности органа (физическая реакция на раздражитель).

Рефлекторные дуги могут быть разными и состоять из нескольких нейронов. К примеру, простая рефлекторная дуга образуется из двух нервных клеток. Одна из них получает информацию, а другая заставляет органы человека совершать определенные действия. Обычно такие действия называют безусловным рефлексом. Он возникает, когда человека ударяют, например, по коленной чашечке, и в случае прикосновения к горячей поверхности.

В основном, простая рефлекторная дуга проводит импульсы через отростки спинного мозга, сложносоставная рефлекторная дуга проводит импульс непосредственно в головной мозг, который, в свою очередь, обрабатывает ее и может откладывать на хранение. В дальнейшем при получении схожего импульса мозг отправляет нужную команду к органам для совершения определенной совокупности действий.

Классификация нейронов по функционалу

Классифицировать нейроны можно по их непосредственному назначению, ведь каждая группа нервных клеток предназначена для определенных действий. Виды нейронов представлены следующим образом:

  1. Чувствительные

Данные нервные клетки предназначены для восприятия раздражения и трансформации его в импульс, перенаправляющийся в мозг.

Воспринимают информацию и передают импульс к мышцам, приводящим в движение части тела и органы человека.

3. Вставочные

Данные нейроны осуществляют сложную работу, они находятся в центре цепочки между чувствительными и двигательными нервными клетками. Подобные нейроны принимают информацию, проводят предварительную обработку и передают импульс-команду.

4. Секреторные

Секреторные нервные клетки синтезируют нейрогормоны и имеют особенное строение с большим количеством мембранных мешочков.

Двигательные нейроны: характеристика

Эфферентные нейроны (двигательные) имеют строение, идентичное другим нервным клеткам. Их сеть дендритов является наиболее разветвленной, а аксоны протягиваются к мышечным волокнам. Они заставляют мышцу сокращаться и распрямляться. Самым длинным в теле человека как раз является аксон двигательного нейрона, идущий до большого пальца ноги от поясничного отдела. В среднем его длина составляет около одного метра.

Практически все эфферентные нейроны располагаются в спинном мозге, ведь именно он отвечает за большинство наших бессознательных движений. Это касается не только безусловных рефлексов (к примеру, моргания), но и любых действий, о которых мы не задумываемся. Когда мы всматриваемся в какой-то предмет, то импульсы посылает к глазному нерву головной мозг. А вот передвижение глазного яблока влево и вправо осуществляется посредством команд спинного мозга, это бессознательные движения. Поэтому с течением возраста, когда увеличивается совокупность бессознательных привычных действий, важность двигательных нейронов представляется в новом свете.

Виды двигательных нейронов

В свою очередь, эфферентные клетки имеют определенную классификацию. Они делятся на два следующих вида:

  • а-мотонейроны;
  • у-мотонейроны.

Первый вид нейронов имеет более плотную структуру волокна и присоединяется к различным мышечным волокнам. Один такой нейрон может задействовать различное количество мышц.

У-мотонейроны немного слабее своих "собратьев", они не могут задействовать несколько мышечных волокон одновременно и отвечают за натяжение мышцы. Можно сказать, что оба вида нейронов являются контролирующим органом двигательной активности.

К каким мышцам присоединяются двигательные нейроны?

Аксоны нейронов связаны с несколькими видами мышц (они являются рабочими), которые классифицируются как:

  • анимальные;
  • вегетативные.

Первая группа мышц представлена скелетными, а вторая относится к категории гладких мышц. Разными являются и способы прикрепления к мышечному волокну. Скелетные мышцы в месте соприкосновения с нейронами образуют своеобразные бляшки. Вегетативные нейроны связываются с гладкими мышцами посредством небольших вздутий или пузырьков.

Заключение

Невозможно представить, как функционировал бы наш организм в отсутствие нервных клеток. Они ежесекундно выполняют невероятно сложную работу, отвечая за наше эмоциональное состояние, вкусовые пристрастия и физическую активность. Многие свои тайны нейроны еще не раскрывают. Ведь даже самая простая теория о невосстановлении нейронов у некоторых ученых вызывает множество споров и вопросов. Они готовы доказать, что в некоторых случаях нервные клетки способны не только образовывать новые связи, но и самовоспроизводиться. Конечно, пока это всего лишь теория, но она вполне может оказаться жизнеспособной.

Работа по изучению функционирования центральной нервной системы крайне важна. Ведь благодаря открытиям в этой области фармацевты смогут разрабатывать новые препараты для активации деятельности головного мозга, а психиатры будут лучше понимать природу многих заболеваний, которые сейчас кажутся неизлечимыми.

Мозг состоит из миллиардов нервных клеток, или нейронов. Нейрон состоит из трех основных частей: тело нейрона (сома); дендриты - короткие отростки, которые получают сообщения от других нейронов; аксон - длинное отдельное волокно, которое передает сообщения от сомы к дендритам других нейронов или тканям тела, мышцам. Передача возбуждения от аксона одного нейрона к дендритам другого называется нейропередачей или нейротрансмиссией. Существует большое многообразие нейронов ЦНС. Чаще всего классификация нейронов осуществляется по трем признакам - морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на три типа - униполярные, биполярные и мультиполярные.

Униполярные нейроны имеют один отросток. В нервной системе человека и других млекопитающих нейроны этого типа встречаются редко. Биполярные нейроны имеют два отростка - аксон и дендрит, обычно отходящие от противоположных полюсов клетки. В нервной системе человека собственно биполярные нейроны встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Существует разновидность биполярных нейронов - так называемые псевдоуниполярные, или ложно-униполярные нейроны. У них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится на дендрит и аксон. Мультиполярные нейроны имеют один аксон и много (2 и более) дендритов. Они наиболее распространены в нервной системе человека. По форме описано до 60 - 80 разновидностей веретенообразных, звездчатых, корзинчатых, грушевидных и пирамидных клеток.

С точки зрения локализации нейронов, они делятся на центральные (в спинном и головном мозге) и периферические (находящиеся за пределами ЦНС, нейроны вегетативных ганглиев и метасимпатического отдела вегетативной нервной системы).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: афферентные (чувствительные), эфферентные (двигательные) и ассоциативные.

1. Афферентные нейроны (синонимы - чувствительные, рецепторные, центростремительные), как правило, являются ложноуниполярными нервными клетками. Тела этих нейронов располагаются не в ЦНС, а в спинномозговых или чувствительных узлах черепномозговых нервов. Один из отростков, отходящий от тела нервной клетки, следует на периферию, к тому пли иному органу и заканчивается там сенсорным рецептором, который способен трансформировать энергию внешнего стимула (раздражения) в нервный импульс. Второй отросток направляется в ЦНС (спинной мозг) в составе задних корешков спинномозговых нервов или соответствующих чувствительных волокон черепномозговых нервов. Как правило, афферентные нейроны имеют небольшие размеры и хорошо разветвленный на периферии дендрит. Функции афферентных нейронов тесно связаны с функциями сенсорных рецепторов. Таким образом, афферентные нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды

Часть нейронов, принимающих участие в обработке сенсорной информации, которые можно рассматривать как афферентные нейроны высших отделов мозга, принято делить в зависимости от чувствительности к действию раздражителей на моносенсорные, бисенсорные и полисенсорные.

Моносенсорные нейроны располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя на мономодальные, бимодальные и полимодальные.

Бисенсорные нейроны чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры больших полушарий головного мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны - это чаще всего нейроны ассоциативных зон мозга, они способны реагировать на раздражение разных сенсорных систем.

2. Эфферентные нейроны (двигательные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам. По своему строению эфферентные нейроны - это мультиполярные нейроны, аксоны которых продолжаются в виде соматических или вегетативных нервных волокон (периферических нервов) к соответствующим рабочим органам, в том числе к скелетным и гладким мышцам, а также к многочисленным железам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

3. Вставочные нейроны (интернейроны, ассоциативные, осуществляют передачу нервного импульса афферентного (чувствительного) нейрона на эфферентный (двигательный) нейрон. Вставочные нейроны располагаются в пределах серого вещества ЦНС. По своему строению это мультиполярные нейроны. Считается, что в функциональном отношении это наиболее важные нейроны ЦНС, так как на их долю приходится 97 %, а по некоторым данным, - даже 99,98 % от общего числа нейронов ЦНС. Область влияния вставочных нейронов определяется их строением, в том числе длиной аксона и числом коллатералей. По своей функции они могут быть возбуждающими или тормозными. При этом возбуждающие нейроны могут не только передавать информацию с одного нейрона на другой, но и модифицировать передачу возбуждения, в частности, усиливать ее эффективность.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор - ацетилхолин), адренергические (медиатор - норадреналин), серотонинергические (медиатор - серотонин), дофаминергические (медиатор - дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота - ГАМК), пуринергические (медиатор - АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора, а также нейромодуляторы.

Другие виды классификаций нейронов. Нервные клетки разных отделов нервной системы могут быть активными вне воздействия, т. е. обладают свойством автоматии. Их называют фоновоактивными нейронами. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение, т. е. они не обладают фоновой активностью.

Некоторые нейроны, по причине их особой значимости в деятельности мозга, получили дополнительные названия по имени исследователя, впервые их описавшего. Среди них пирамидные клетки Беца, локализованные в новой коре большого мозга; грушевидные клетки Пуркинье, клетки Гольджи, клетки Лугано (в составе коры мозжечка); тормозные клетки Реншоу (спинной мозг) и ряд других нейронов.

Среди сенсорных нейронов выделяют особую группу, которые получили название нейронов-детекторов. Нейроны-детекторы - это высокоспециализированные нейроны коры и подкорковых образований, способные избирательно реагировать на определенный признак сенсорного сигнала, имеющий поведенческое значение. Такие клетки выделяют в сложном раздражителе его отдельные признаки, что является необходимым этапом для опознания образов. При этом информация об отдельных параметрах стимула кодируется нейроном-детектором в виде потенциалов действия.

В настоящее время нейроны-детекторы выявлены во многих сенсорных системах человека и животных. Начальные этапы их изучения относятся к 60-м годам, когда были впервые идентифицированы ориентационные и дирекционные нейроны в сетчатке лягушки, в зрительной коре кошки, а также в зрительной системе человека (за открытие феномена ориентационной избирательности нейронов зрительной коры кошки Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии). Явление ориентационной чувствительности заключается в том, что нейрон-детектор дает максимальный по частоте и числу импульсов разряд только при определенном положении в рецептивном поле световой полоски или решетки; при другой ориентации полоски, или решетки, клетка не реагирует или отвечает слабо. Это означает, что имеет место острая настройка нейрона-детектора на потенциалы действия, отражающие соответствующий признак предмета. Дирекционные нейроны реагируют только на определенное направление движения стимула (при определенной скорости движения). Помимо ориентационных и дирекционных нейронов в зрительной системе обнаружены детекторы сложных физических явлений, встречающихся в жизни (движущаяся тень человека, циклические движения рук), детекторы приближения-удаления объектов. В новой коре, в базальных ганглиях, в таламусе обнаружены нейроны особо чувствительные к стимулам, сходным с человеческим лицом или какими-то его частями. Ответы этих нейронов регистрируются при любом расположении, размере, цвете «лицевого раздражителя». В зрительной системе выявлены нейроны с возрастающей способностью к обобщению отдельных признаков объектов, а также полимодальные нейроны, обладающие способностью реагировать на стимулы разных сенсорных модальностей (зрительно-слуховые, зрительно-соматосенсорные и т. д.).