» » Процесс кроветворения у плода осуществляется в. Кроветворение в период внутриутробного развития. Возрастные особенности количества крови, состава плазмы, физико-химических свойств крови

Процесс кроветворения у плода осуществляется в. Кроветворение в период внутриутробного развития. Возрастные особенности количества крови, состава плазмы, физико-химических свойств крови
КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О2, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.

Кровь, лимфа и тканевая жидкость являются внутренней средой организма , в которой осуществляется жизнедеятельность клеток, тканей и органов. Внутренняя среда человека сохраняет относительное постоянство своего состава (гомеостаз ), которое обеспечивает устойчивость всех функций организма и является результатом рефлекторной и нервно-гуморальной саморегуляции. Кровь, циркулируя в кровеносных сосудах, выполняет ряд жизненно важных функций: транспортную (транспортирует кислород, питательные вещества, гормоны, ферменты, а также доставляет остаточные продукты обмена веществ к органам выделения), регуляторную (гомеостатическую - поддерживает относительное постоянство температуры тела и постоянство внутренней среды), защитную (клетки крови обеспечивают реакции иммунного ответа, а также свертывание при ранении).

Этапы внутриутробного кроветворения

Процесс внутриутробного кроветворения включает 3 этапа:

1. Желточный этап (мезобластический, ангиобластический). Начинается с 3-й продолжается до 9-й недели. Гемопоэз происходит в сосудах желточного мешка (из стволовых клеток образуются примитивные первичные эритробласты (мегалобласты), содержащие HbP.

2. Печеночный (гепатолиенальный) этап. Начинается с 6-й недели и продолжается почти до рождения. Вначале в печени происходит как мегалобластический, так и нормобластический эритропоэз, а с 7-го месяца происходит только нормобластический эритропоэз. Наряду с этим происходит гранулоцито-, мегакариоцито-, моноцито- и лимфоцитопоэз. С 11-й недели по 7-й месяц в селезенке присходит эритроцито-, гранулоцито-, моноцито- и лимфоцитопоэз.

3. Костно-мозговой (медуллярный, миелоидный) этап. Начинается с конца 3-го месяца и продолжается в постнатальном онтогенезе. В костном мозге всех костей (начиная с ключицы) из стволовых клеток происходит эритропоэз по нормобластическому типу, гранулоцито-, моноцито-, мегакариоцитопоз и лимфопоэз. Роль органов лимфопоэза в этот период выполняют селезенка, тимус, лимфоузлы, небные миндалины и пейеровы бляшки.

В постнатальной жизни основным кроветворным органом становится костный мозг. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование всех клеток крови. Интенсивность гемопоэза в остальных органах после рождения быстро снижается.

Возрастные особенности количества крови, состава плазмы, физико-химических свойств крови

Количество крови . Общее количество крови по отношению к весу тела новорожденного составляет у новорожденных 15%, грудных детей 14% у детей одного года - 11%, а у взрослых - 7–8%. При этом у мальчиков несколько больше крови, чем у девочек. Снижение величины данного показателя до уровня взрослых происходит к 6–9 годам. Отмечается некоторое увеличение количества крови в период полового созревания. При старении происходит снижение относительной массы крови.

В покое приблизительно 40–45 % крови циркулирует в кровеносных сосудах, а остальная ее часть находится в депо (капиллярах печени, селезенки и подкожной клетчатки). Кровь из депо поступает в общее кровяное русло при повышении температуры тела, мышечной работе, подъеме на высоту, при кровопотерях. Быстрая потеря циркулирующей крови опасна для жизни. Например, при артериальном кровотечении и потере 1/3–1/2 всего количества крови наступает смерть вследствие резкого падения кровяного давления. К кровопотере особенно чувствительны грудные дети и новорожденные (еще недостаточно развиты компенсаторные механизмы). Чувствительность к кровопотере повышается при наркозе, гипотермии, болевой и психической травме.

Сравнительно высокий гематокрит - 0,54 (гематокрит - это часть объема крови, приходящаяся на долю форменных элементов) у новорожденных снижается до уровня взрослых к концу 1-го месяца, после чего снижается до 0,35 в грудном возрасте и в детстве (в 5 лет - 0,37, в 11-15 лет - 0,39). После чего его величина повышается и к концу пубертатного периода гематокрит достигает уровня взрослых (у мужчин - 0,42–0,52, у женщин - 0,37–0,47).

Плазма . Плазма - жидкая часть крови (ее объем приблизительно равен 2,8–3,0 л), представляет собой надосадочную жидкость, полученную после центрифугирования цельной крови с добавленными к ней антикоагулянтами (веществами, предотвращающими свертывание). На ее долю у взрослых приходится 55–60 % общего объема крови, у новорожденных – меньше 50 % вследствие большого объема эритроцитов.

Состав плазмы: Н 2 О (90–92 %) и сухой (плотный) остаток (8–10 %), который включает неорганические и органические вещества.

Белки. Количество общего белка плазмы у взрослых составляет 65–85 г/л. Белки плазмы методом электрофореза могут быть разделены на альбумины (35–55 г/л), глобулины (20–35 г/л) и фибриноген (2–4 г/л); фракция глобулинов разделяется на альфа-1, альфа-2, бета и гамма-глобулины.

Роль белков плазмы:

    Создают онкотическое давление (1/200 осмотического давления плазмы

    Поддерживают рН (буферные свойства).

    Поддерживают вязкость крови (важно для артериального давления).

    Участвуют в свертывании крови (фибриноген и др.).

    Являются факторами иммунитета (иммуноглобулины, белки комплемента).

    Выполняют транспортную функцию (перенос гормонов, микроэлементов).

    Выполняют питательную функцию (пластическую).

    Препятствуют (альбумины) или способствуют (глобулины) оседанию эритроцитов.

    Являются ингибиторами по отношению к некоторым протеазам (антитрипсин - ингибитор трипсина).

    Регулируют функции, обмен веществ (белковые гормоны, ферменты).

    Обеспечивают перераспределение воды между тканями и кровью

У новорожденных содержание белков в крови равно 48–56 г/л. Увеличение их количества до уровня взрослых (65–85 г/л) происходит к 3–4 годам. Низкий уровень белков в крови новорожденных обусловливает меньшее онкотическое давление крови по сравнению со взрослыми.

У детей младшего возраста характерны индивидуальные колебания количества белков в крови. Сравнительно низкий уровень белка объясняется недостаточной функцией печени (белокобразующей). В течение онтогенеза изменяется соотношение альбумины/глобулины. В первые дни после рождения в крови больше глобулинов, особенно гамма-глобулинов (высокое содержание гамма-глобулинов в момент рождения объясняется способностью их проходить через плацентарный барьер из плазмы матери). Они затем быстро разрушаются. Гамма-глобулины доходят до нормы взрослых к 3 годам, альфа- и бета-глобулины – к 7 годам. В первые месяцы содержание альбуминов снижено (37 г/л). Оно постепенно увеличивается и к 6 месяцам достигает 40 г/л, а к 3 годам достигает уровня взрослых. К старости происходит некоторое снижение концентрации белков и белкового коэффициента за счет снижения содержания альбуминов и повышения количества глобулинов.

У детей отмечается сравнительно высокое содержание в крови молочной кислоты (2,0–2,4 ммоль/л), что является отражением повышенного гликолиза. У грудного ребенка ее уровень на 30 % выше, чем у взрослых. С возрастом ее количество уменьшается (в возрасте 1 год - 1,3–1,8 ммоль/л).

Содержание липидных фракций новорожденных отличается от спектра этих веществ у более старших детей и взрослых тем, что у них значительно увеличено содержание альфа-липопротеинов и понижено количество бета-липопротеинов . К 14 годам показатели приближаются к нормам взрослого человека. Количество холестерола в крови новорожденных относительно невысоко, и увеличивается с возрастом (рисунок 8.1). При этом отмечается, что при преобладании в пище углеводов уровень холестерола в крови повышается, а при преобладании белков - понижается. В пожилом и старческом возрастах уровень холестерола увеличивается.

Рисунок 8.1 – Возрастные особенности количества холистерола в крови

К минеральным веществам крови относятся поваренная соль (NaCl), 0,85–0,9 %, хлористый калий (КС1), хлористый кальций (СаС1 2) и бикарбонаты (NaHCO 3), по 0,02 %, и др. У новорожденных количество натрия меньше , чем у взрослых, и доходит до нормы к 7–8 годам. С 6 до 18 лет содержание натрия колеблется от 170 до 220 мг%. Количество калия , наоборот, наиболее высокое у новорожденных, самое низкое – в 4–6 лет и достигает нормы взрослых к13–19 годам.

У мальчиков 7–16 лет неорганического фосфора больше , чем у взрослых, в 1,3 раза; органического фосфора больше, чем неорганического, в 1,5 раза, но меньше , чем у взрослых.

У новорожденных детей рН и буферные основания крови снижены (декомпенсированный ацидоз в 1-й день, а затем - ацидоз компенсированный). К старости количество буферных оснований снижается (особенно бикарбонатов крови).

Относительная плотность крови у новорожденных выше (1,060–1,080), чем у взрослых (1,050–1,060). Затем установившаяся относительная плотность крови в течение первых месяцев сохраняется на уровне взрослых.

Вязкость крови новорожденных сравнительно высока (10,0–14,8), что в 2–3 раза выше, чем у взрослых (5) (в основном за счет увеличения количества эритроцитов). К концу 1-го месяца вязкость уменьшается и остается на сравнительно постоянном уровне, не изменяясь к старости.

Роль желточного мешка . Через некоторое время после оплодотворения яйца (2-3 нед) возникает эмбриональное кроветворение. Первые этапы этого процесса происходят в желточном мешке, где найдены недифференцированные клетки, называемые мезобластами, которые мигрируют в него из первичной полоски эмбриона. Мезобласты имеют высокую митотическую активность и впоследствии дифференцируются в клетки, называемые первичными эритробластами, несомненно родственные зрелым кровяным клеткам взрослого человека, а также первичным эндотелиальным клеткам, образующим сосудистую систему желточного мешка. В течение нескольких часов после миграции происходит деление и дифференцировка мезобластов желточного мешка до первичных эритроцитов. Большинство этих клеток ядросодержащие, некоторые же не имеют ядер. Но все они синтезируют гемоглобин, что обусловливает красноватый цвет хорошо различимых кровяных островков желточного мешка.
В кровяных островках найдены также предшественники тромбоцитов, мегакариоциты, которые тоже происходят от мезобластов. Другие мезобласты, видимо, дифференцируются в клетки, называемые гемоцитобластами.
У эмбрионов некоторых млекопитающих описана вторая стадия гемопоэза в желточном мешке. Она существует и у человеческих эмбрионов, но протекает не так энергично, как, например, у кролика, эмбриогенез клеток крови которого наиболее изучен. На второй стадии гемопоэза в желточном мешке гемоцитобласты дифференцируются в окончательные эритробласты, которые впоследствии синтезируют гемоглобин и становятся окончательными, или вторичными, нормобластами. Последние могут терять свои ядра и становиться окончательными эритроцитами. В кровяных островках формируются сосудистые каналы, объединяющиеся в конечном счете в сеть кровеносных сосудов. Эта сеть примитивных кровеносных сосудов на ранних этапах содержит первичные эритробласты и гемоцитобласты, а на более поздних - зрелые эритробласты и эритроциты. К концу третьей недели эмбрионального развития кролика гемопоэтическая активность кровяных островков падает, и процесс гемопоэза перемещается в печень.
Эмбриональная мезенхима . Дополнительную роль в раннем эмбриональном гемопоэзе непосредственно в полости тела играют первичные мезенхимные клетки, особенно в районе передней прекардиальной мезенхимы. Малая часть мезенхимных клеток развивается в эритробласты, мегакариоциты, гранулоциты и фагоцитирующие клетки, аналогичные соответствующим клеткам взрослых. Количество этих клеток невелико, и больших разрастаний клеток крови, подобных кроветворным островкам желточного мешка, в мезенхиме полости тела не формируется. Стволовые клетки, располагающиеся среди этих гемопоэтических клеток (вне желточного мешка), вероятно, играют главную роль в генерации последующих поколений гемопоэтических клеток у плода и в постнатальном периоде, хотя относительный вклад первичных стволовых клеток, находящихся в желточном мешке и вне его, в более поздний гемопоэз пока не ясен.
Печеночный период эмбрионального гемопоэза . У человека, начиная примерно со стадии 12 мм эмбриона (возраст 6 нед), гемопоэз постепенно перемещается в печень. Печень скоро становится основным местом гемопоэза и является активной в этом отношении до момента рождения. Поскольку энтодермальные тяжи печени формируются в поперечные перегородки, они сталкиваются с блуждающими мезенхимными клетками с морфологией лимфоцитов. Эти маленькие круглые лимфоидные клетки, называемые лимфоцитоидными блуждающими клетками, впоследствии улавливаются между первичными печеночными энтодермальными тяжами и эндотелиальными клетками врастающих капилляров. Они образуют гемоцитобласты, подобные таковым в желточном мешке. Эти гемоцитобласты вскоре формируют очаги гемопоэза, аналогичные кровяным островкам желточного мешка, где вторичные эритробласты образуются в больших количествах. Вторичные эритробласты впоследствии делятся и дифференцируются в зрелые эритроциты, при этом происходят активация синтеза гемоглобина и потеря клеточного ядра. Хотя зрелые эритроциты обнаруживаются в печени эмбриона уже в возрасте 6 нед, в значимом количестве они появляются в циркуляции гораздо позднее. Таким образом, к четвертому месяцу жизни плода большинство циркулирующих эритроцитов представлено вторичными зрелыми формами. Мегакариоциты также, вероятно, образуются из гемоцитобластов в печени эмбриона и плода. В эмбриональной печени находят гранулоцитарные клетки, но развиваются они, видимо, не из гемоцитобластов, а непосредственно из блуждающих лимфоцитоидных клеток.
Эмбриональный костный мозг и миелопоэз . Различные кости у эмбриона образуются не одновременно. Раньше других - длинные кости добавочного скелета. Первоначально формируется хрящевая модель каждой кости. Центральное ядро диафиза впоследствии оссифицируется, и вскоре вслед за врастанием мезенхимных клеток из периоста развивается область костной резорбции. Процесс движения мезенхимных клеток сопровождается врастанием внутрь капилляров. Количество мезенхимных клеток продолжает увеличиваться за счет непрерывного притока новых клеток, а также делением тех, которые уже находятся внутри недавно сформировавшейся костномозговой полости. Они нарабатывают неклеточный материал, или матрикс, заполняющий развивающуюся полость кости. Из этих ранних костномозговых мезенхимных клеток образуются клетки, морфологически сходные с гемоцитобластами печени и желточного мешка. Аналогично последним, они дают начало мегакариоцитам и эритроидным клеткам, а также миелоидным, включая нейтрофилы, базофилы и эозинофилы. Эмбриональный костный мозг заметно отличается от центров более раннего развития гемопоэза тем, что образование миелоидных клеток идет здесь особенно энергично и доминирует в гемопоэзе. Процесс формирования ранних миелоидных клеток, или миелопоэз, начинается в центральной части костномозговой полости и распространяется оттуда, чтобы в конечном счете захватить всю полость кости. Эритропоэз в эмбриональном костном мозге развивается немного позже и в основном смешивается с процессом миелопоэза, так что среди большинства созревающих клеток миелоидной линии можно наблюдать малые очаги эритропоэза. После рождения у человека гемопоэз в печени прекращается, но продолжается в костном мозге всю оставшуюся жизнь.
Гемопоэз в селезенке эмбриона и плода . Последним важнейшим очагом гемопоэза, который образуется в эмбриональном периоде, является селезенка. Хотя сама селезенка формируется у человека намного раньше, циркулирующие гемопоэтические предшественники начинают заполнять ее примерно на четвертом месяце еременности. Вероятно в результате скопления большого объема крови селезенка плода становится центром гемопоэза до момента рождения, когда селезеночный эритропоэз постепенно прекращается. В целом миелопоэтическая активность селезенки эмбриона и плода сравнительно невелика. Позднее, в течение пятого месяца эмбрионального развития, формируется белая пульпа селезенки. Этот процесс связан с дифференцировкой мезенхимных клеток, которые группируются вокруг селезеночных артериол. Образование селезеночных лимфоцитов у эмбриона полностью пространственно отделено от центров эритропоэза в этом органе.
Другие места гемопоэза у эмбриона и плода . Эмбриональный тимус развивается как производное третьего жаберного кармана. Тимический эпителий заполняется блуждающими мезенхимными клетками, которые начинают быстро размножаться и дифференцироваться в лимфоциты. Одновременно в тимусе формируется незначительное количество эритроидных и миелоидных клеток, но преобладает процесс лимфопоэза. Лимфоциты, образующиеся в этом органе, представляют собой особый класс лимфоцитов со специальной функцией - участие в клеточном иммунитете. Лимфатические узлы развиваются как разрастания примитивных лимфатических сосудов, которые вскоре окружаются большим количеством мезенхимных клеток. Впоследствии эти клетки округляются и становятся похожими по виду на лимфоциты взрослого. Некоторые из мезенхимных клеток дают начало клеткам других линий, таких как эритроциты, гранулоциты, мегакариоциты, но это явление преходящее, поскольку основным процессом в тимусе является лимфопоэз.
Заключение . Во всех гемопоэтических органах эмбриона и плода происходят тождественные процессы. Циркулирующие первичные гемопоэтические стволовые клетки расселяются в специфической тканевой нише способом, который до конца еще не понят. Там они дифференцируются в клетки, распознаваемые как гемопоэтические предшественники. Эти эмбриональные гемопоэтические предшественники, вероятно, способны к мультилинейной дифференцировке, но в каждом конкретном месте процесс гемопоэза может быть нацелен на формирование определенной линии клеток, возможно, под влиянием локального микроокружения. Различные очаги эмбрионального гемопоэза активны только на соответствующих этапах развития. За этой активацией следует программируемая инволюция. Исключение составляет костный мозг, который сохраняется как основной центр гемопоэза у взрослых. Лимфатические узлы, селезенка, тимус и другие лимфоидные ткани продолжают выполнять лимфопоэтическую функцию и у взрослого человека.

Становление гемопоэза в антенатальном и постнатальном периодах.

Процесс внутриутробного кроветворения включает 3 этапа:

1. Желточный этап (мезобластический, ангиобластический). Начинается с 3-й продолжается до 9-й недели. Гемопоэз происходит в сосудах желточного мешка (из стволовых клеток образуются примитивные первичные эритробласты (мегалобласты), содержащие HbP.

2. Печеночный (гепатолиенальный) этап. Начинается с 6-й недели и продолжается почти до рождения. Вначале в печени происходит как мегалобластический, так и нормобластический эритропоэз, а с 7-го месяца происходит только нормобластический эритропоэз. Наряду с этим происходит гранулоцито-, мегакариоцито-, моноцито- и лимфоцитопоэз. С 11-й недели по 7-й месяц в селезенке присходит эритроцито-, гранулоцито-, моноцито- и лимфоцитопоэз.

3. Костно-мозговой (медуллярный, миелоидный) этап. Начинается с конца 3-го месяца и продолжается в постнатальном онтогенезе. В костном мозге всех костей (начиная с ключицы) из стволовых клеток происходит эритропоэз по нормобластическому типу, гранулоцито-, моноцито-, мегакариоцитопоз и лимфопоэз. Роль органов лимфопоэза в этот период выполняют селезенка, тимус, лимфоузлы, небные миндалины и пейеровы бляшки.

В постнатальной жизни основным кроветворным органом становится костный мозг. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование всех клеток крови. Интенсивность гемопоэза в остальных органах после рождения быстро снижается.

Особенности гемопоэза у ребёнка .

Особенности эритропоэза у ребенка.

У новорожденного ребёнка преобладает HbF, он обладает большим сродством к кислороду и легко отдаёт его тканям. Начиная с первых недель постнатальной жизни происходит резкое увеличение синтезаHbА, тогда как образование HbF резко снижается (приблизительно на 3% в неделю). К полугодовалому возрасту содержаниеHbAв крови составляет 95-98% (то есть, как у взрослого), тогда как концентрацияHbFне превышает 3%.

У новорожденного ребенка число эритроцитов в периферической крови достигает 710 12 /л, а уровень гемоглобина – 220 г/л. Повышенное число эритроцитов у новорожденного объясняется тем, что плод в утробе матери и во время родов испытывает состояние гипоксии, вызывающей в его крови увеличение содержания эритропоэтинов. Однако после рождения у ребенка возникает гипероксия (так как устанавливается внешнее дыхание), что приводит к снижению интенсивности эритропоэза (за счёт снижения выработки эритропоэтина), хотя в первые дни он остается на достаточно высоком уровне. Через несколько часов после рождения число эритроцитов и уровень гемоглобина даже возрастают, главным образом за счет сгущения крови, но уже к концу первых суток количество эритроцитов начинает падать. В дальнейшем содержание эритроцитов уменьшается на 5-7-й, а гемоглобина – на 10-й день жизни ребенка после массового гемолиза эритроцитов, сопровождающегося так называемой транзиторной гипербилирубинемией новорожденных, проявляющейся у части детей «физиологической желтухой». Столь быстрое снижение числа эритроцитов у новорождённого ребенка объясняется очень коротким периодом жизни красных кровяных телец плода (с ними ребенок появляется на свет) – всего 10-14 дней – и очень высокой степенью их разрушения, в 5-7 раз превышающей интенсивность гибели эритроцитов у взрослого. Однако в эти сроки происходит и быстрое образование новых эритроцитов.

Число ретикулоцитов у доношенных новорожденных детей колеблется в широких пределах и составляет от 0,8 до 4%. Более того, в периферической крови могут встречаться единичные нормобласты. Однако к 10 дню жизни ребёнка содержание ретикулоцитов не превышает 2%. К этому сроку в периферической крови нормобласты исчезают.

К 3 месяцу жизни ребёнка уровень гемоглобина и количество эритроцитов снижаются, достигая 100-130 г/л и 3,0 — 4,510 12 /л соответственно. Столь низкие цифры числа эритроцитов и уровня гемоглобина у грудных детей представляют так называемую «физиологическую анемию» или «эритробластопению младенцев» и редко сопровождаются клиническими проявлениями гипоксии. Резкое уменьшение содержания эритроцитов отчасти связано с гемолизом фетальных эритроцитов, срок жизни которых приблизительно в 2 раза меньше, чем у взрослого человека. Кроме того, у грудного ребёнка по сравнению с взрослыми интенсивность эритропоэза значительно снижена, что связано с пониженным образованием в этот период основного фактора эритропоэза – эритропоэтина. В дальнейшем содержание эритроцитов и гемоглобина может слегка возрастать или падать, или оставаться на одном и том же уровне до трёхлетнего возраста. Несмотря на то, что к десяти годам число эритроцитов и уровень гемоглобина постепенно растёт, колебания как в ту, так и в другую сторону сохраняются вплоть до полового созревания. К этому моменту отмечаются половые различия в нормативах красной крови.

Особенно резкие индивидуальные вариации в количестве эритроцитов и уровне гемоглобина наблюдаются в возрастные периоды от 1 года до 2-х лет, от 5 до 7 и от 12 до 15-ти лет, что, по-видимому, связано со значительными вариациями в темпах роста детей.

Значительно отличаются эритроциты новорождённого по размеру и форме: с первых часов жизни и до 5-7-го дня у детей отмечается макроцитоз и пойкилоцитоз. В крови выявляется много молодых незрелых крупных форм эритроцитов. В течение первых часов жизни у ребенка наблюдается резкое повышение количества ретикулоцитов (ретикулоцитоз) до 4-6%, что в 4-6 раз превышает число этих форм у взрослого. Кроме того, у новорождённого можно обнаружить эритробласты и нормобласты. Всё это указывает на интенсивность эритропоэза в первые дни жизни ребенка.

Эритроциты плода и новорожденного ребёнка, по сравнению с эритроцитами взрослых, более чувствительны к оксидантам, что может приводить к нарушению структуры мембраны, гемолизу и сокращению сроков их жизни. Эти явления объясняются снижением в эритроцитах сульфгидрильных групп и уменьшением содержания антиоксидантных ферментов. Однако к концу 1 недели жизни ребёнка функция антиоксидантной системы усиливается, возрастает активность таких ферментов, как глютатионпероксидаза, глютатионкаталаза, супероксиддисмутаза, что защищает структуры мембраны эритроцитов ребёнка от окисления и возможности дальнейшего разрушения. К этому сроку у большинства новорожденных заканчивается физиологическая желтуха.

На эритропоэз плода и особенно развивающегося ребёнка оказывают влияние те же факторы, что и у взрослого человека. В частности, железо в организме плоданакапливается на всём протяжении его развития, но особенно интенсивно этот процесс осуществляется в третьем триместре беременности. Материнское железо, переходя через плаценту, связывается с трансферрином плода и транспортируется в основном в печень. У плода имеется положительный запас железа, что обусловлено совершенными механизмами плаценты, позволяющими обеспечивать будущего ребёнка достаточным количеством железа даже при наличии железодефицитной анемии у беременной. К таким механизмам относится более высокая способность фетального трансферрина насыщаться железом, а также замедленный расход ферритина в связи с низкой активностью ксантиноксидазы.

Следовательно, у плода имеется положительный баланс железа. Транспорт железа является активным процессом, идущим против градиента концентрации в пользу плода без обратной передачи в плаценту и к матери. К моменту рождения ребёнка общий запас железа в его организме составляет 75 мг/кг массы тела. Эта величина является константной как у доношенного, так и у недоношенного ребёнка.

У ребёнка в желудочно-кишечном тракте абсорбция железа осуществляется значительно интенсивнее, чем у взрослых. Так, у детей первых месяцев жизни, находящихся на грудном вскармливании, может всасываться до 57% потребляемого железа, в возрасте 4-5 месяцев – до 40-50%, а в 7-10 лет – до 8-18%. У взрослого человека в среднем в желудочно-кишечном тракте утилизируется от 1 до 2% железа, поступаемого с пищей.

Суточные нормы поступления железа, необходимого для развития эффективного эритропоэза, следующие: до 4-х месячного возраста — 0,5 мг, от 5 месяцев до года – 0,7 мг, от 1 года до 12 лет – 1,0 мг, от 13 до 16 лет – 1,8 мг для мальчиков и 2,4 мг для девочек.

Поскольку ребёнок растёт, и общее содержание гемоглобина у него резко возрастает, то для образования последнего требуется усиленное поступление железа с пищей. Особенно велика потребность в железе в подростковом и юношеском возрасте. При наступлении менструаций у девочек потребность в железе значительно увеличивается, и оно может быть компенсировано лишь полноценным питанием.

Начиная с 12 недели, у плода в очагах кроветворения можно обнаружить кобальт , что подчёркивает его важную роль в процессах кроветворения. В дальнейшем с 5-го месяца внутриутробного развития, когда появляется нормобластическое кроветворение, кобальт у плода выявляется в печени. Вэритропоэзе участвует такжемарганец, медь, селен и другие микроэлементы.

Важную роль в регуляции эритропоэза у плода и ребёнка играют витамин В 12 и фолиевая кислота. Уплодакобаламин поступает в печень через плаценту от матери будущего ребёнка. Удоношенных детейзапасы витамина В 12 составляют 20-25 мкг. Суточная потребность ребёнка в витамине В 12 составляет 0,1 мкг. В то же время в 100 мл молока матери содержится приблизительно около 0,11 мкг кобаламина. В сыворотке доношенного новорожденного ребёнка содержание кобаламина колеблется в очень больших пределах и в среднем составляет 590 нг/л. В дальнейшем концентрация витамина В 12 в крови снижается и достигает к шестинедельному возрасту нормы, характерной для взрослого человека (в среднем 440 нг/л). Суточная потребность в фолиевой кислоте у грудных детей колеблется от 20 до 50 мкг. Содержание фолата в грудном молоке матери составляет в среднем 24 мкг/литр. Следовательно, грудное кормление полностью обеспечивает ребёнка необходимым количеством не только витамина В 12 , но и фолиевой кислотой.

В антенатальном периоде эритропоэтин образуется сначала в желточном мешке, а затем в печени. Его синтез в этом органе, как и у взрослого человека, регулируется напряжением кислорода в тканях и резко возрастает при гипоксии. Вместе с тем, в последнем триместре беременности образование эритропоэтина у плода переключается с печени на почки, которые к 40 дню после рождения ребёнка становятся основным органом синтеза эритропоэтина. Действие эритропоэтина у плода также осуществляется через рецепторы, которые находятся на гемопоэтических стволовых клетках эмбриона. Кроме того, рецепторы к эритропоэтину обнаружены в клетках плаценты, благодаря чему эритропоэтический фактор может быть перенесён от матери к плоду. Содержание эритропоэтина к моменту рождения как у доношенных, так и недоношенных детей значительно выше, чем у взрослых. В то же время у недоношенных детей его концентрация варьирует в широких пределах. В первые две недели после рождения ребёнка содержание эритропоэтина резко снижается (особенно у недоношенных) и даже к тридцатому дню жизни оказывается ниже, чем в среднем у взрослых. На втором месяце жизни ребёнка наблюдается существенное увеличение уровня эритропоэтина, и его концентрация приближается к цифрам, характерным для взрослых (5 – 35 МЕ/мл).

Особенности лейкопоэза у ребенка

Сразу после рождения ребенка число лейкоцитов очень велико и может достигать 2010 9 /л и даже больше. Этот физиологический лейкоцитоз обусловлен тяжелейшим стрессом, который ощущает ребенок, переходя во время родов в новую среду обитания. На протяжении 1 дня число лейкоцитов может даже возрастать и достигать 3010 9 /л, что связано со сгущением крови. Затем постепенно происходит уменьшение количества лейкоцитов (у части детей наблюдается их небольшой подъем между 4 и 9 днями). В грудном возрасте в разные месяцы уровень лейкоцитов колеблется в очень широких пределах – от 6 до 1210 9 / л. Нормы, характерные для взрослого человека, устанавливаются в возрасте 9-10 лет.

Лейкоцитарная формула новорожденного очень напоминает таковую у взрослых, хотя и отмечается явный сдвиг влево за счет преобладания, в основном, палочкоядерных нейтрофилов. Со 2-го дня число нейтрофилов начинает падать, а лимфоцитов – возрастать. На 5-7 день число нейтрофилов и лимфоцитов равняется 40-45% для каждой популяции. Это так называемый «первый перекрест» относительного содержания нейтрофилов и лимфоцитов. В дальнейшем число нейтрофилов продолжает уменьшаться, а число лимфоцитов повышаться более медленными темпами и к 3 –5-му месяцу лейкоцитарная формула представляет собой зеркальное отражение для взрослого человека. При этом число нейтрофилов достигает 25-30%, а лимфоцитов – 60–65%. Такое соотношение нейтрофилов и лимфоцитов с небольшими колебаниями сохраняется до 9-10-ти месячного возраста, после чего начинается планомерный подъем числа нейтрофилов и падения количества лейкоцитов, что приводит к появлению «второго перекреста» в возрасте 5-6 лет. После этого число лимфоцитов постепенно снижается, а количество нейтрофилов нарастает и к моменту полового созревания становится таким же, как у взрослого человека. Следует, однако, указать, что у детей одного и того же возраста, особенно в первые дни и месяцы жизни, отмечается чрезвычайный разброс в процентном содержании как нейтрофилов, так и лимфоцитов.

Что касается других клеток белой крови (эозинофилов, базофилов и моноцитов), то их относительное количество претерпевает на всем протяжении развития ребенка лишь незначительные колебания и мало отличается от показателей лейкоцитарной формулы взрослого человека

Примечание. В 5 дней и 5 лет содержание нейтрофилов и лимфоцитов в периферической крови примерно одинаково (45%). Чем младше ребенок, тем больше в периферической крови лимфоцитов. Соотношение лимфоцитов и нейтрофилов можно ориентировочно определить по формуле:

до 5 лет: нейтрофилы (%) = 45-2(5-п), лимфоциты(%) = 45+2(5-п), где п – число лет;

после 5 лет: нейтрофилы (%) = 45+2(п-5), лимфоциты (%) = 45-2(п-5)

Тромбоциты у ребенка

У новорождённого в первые часы жизни содержание кровяных пластинок не отличается от величин, характерных для детей более позднего возраста и для взрослых. В то же время у разных детей оно колеблется в очень широких пределах от 10010 9 /л до 40010 9 /л и в среднем равно около 20010 9 /л. В первые часы после рождения количество тромбоцитов возрастает, что может быть связано со сгущением крови, а к концу суток снижается и достигает цифр, характерных для ребенка, только что появившегося на свет. К концу 2-х суток количество тромбоцитов вновь увеличивается, приближаясь к верхней границе нормы взрослого человека. Однако к 7-10 дню число кровяных пластинок резко падает и достигает 150-20010 9 /л. Вполне возможно, что тромбоциты, как и эритроциты, подвергаются на первой неделе жизни массовому разрушению. У ребенка в возрасте 14 дней количество тромбоцитов соответствует приблизительно величине, характерной для новорождённого. В дальнейшем содержание тромбоцитов изменяется незначительно в ту или другую сторону, не отличаясь существенно от общепринятых норм для взрослых людей (150 — 40010 9 /л).

Особенности гемостаза у детей

У всех здоровых доношенных новорожденных первых пяти дней жизни имеется сопряженное снижение уровня прокоагулянтов, основных физиологических антикоагулянтов и плазминогена (табл. 32). Подобное соотношение свидетельствует о сбалансированности между отдельными звеньями системы гемостаза, хотя и на более низком функциональном уровне, чем в последующие возрастные периоды жизни. Характерная для раннего периода адаптации транзиторная гипокоагуляция обусловлена преимущественной гипопродукцией факторовIXиX, связанной с К-гиповитаминозом, хотя и не исключён механизм их потребления в процессе свёртывания крови. Примечательно, что в первые минуты и дни жизни, несмотря на фоновый дефицит витамина К, в плазме здоровых детей существенно повышается содержание РФМК – продуктов усиленной ферментативной деятельности тромбина. В динамике этот показатель быстро и прогрессивно увеличивается (по сравнению с нормой в 4,2 раза), достигая максимума к 3 – 5 дням. В последующем количество этих промежуточных продуктов фибринообразования заметно снижается и к концу периода новорождённости становится практически нормальным.

У детей с хронической гипоксией, недоношенностью отмечается более позднее формирование равновесия участников гемостатических реакций (табл. 33). Эти дети уже до родов, в родах и сразу после рождения проявляют склонность к кровоточивости и данная тенденция увеличивается в первые дни жизни («геморрагическая болезнь новорождённых»). У некоторых из них геморрагический синдром сочетается с тромбозами из-за низкой активности фибринолиза и антикоагулянтов, развитием ДВС-синдрома.

Время свертывания по Ли-Уайту: 5-12 мин.

Длительность кровотечения: 1-2 мин.

Схема анализа гемограммы

Оценка эритрограммы: содержания гемоглобина, эритроцитов, величины цветного показателя (ц.п.), количества ретикулоцитов, морфологических особенностей эритроцитов.

Снижение гемоглобина и эритроцитов – анемия, повышение – эритроцитоз

Ц.п. = (Нв в г/л х 0,3) : 2 первые цифры эритроцитов

Пример: Нв – 120г/л, эритроциты – 3,6*10.12/л, ц.п.=(120 х 0,3):36 = 1,0

Норма: 0,8 – 1,1

Ниже 0,8 – гипохромия, выше1,1 – гиперхромия

Снижение ретикулоцитов – ретикулоцитопения – гипорегенерация

Повышение ретикулоцитов – ретикулоцитоз – гиперрегенерация

Анизоцитоз – большие разбросы колебания размеров эритроцитов, микроцитоз – преобладание эритроцитов размером менее 7 микрон, макроцитоз – преобладание эритроцитов размером более 8 микрон

Оценка лейкограммы: количества лейкоцитов, соотношения разных форм лейкоцитов

Снижение количества лейкоцитов – лейкопения, увеличение – лейкоцитоз.

Снижение количества эозинофилов – эозинопения, повышение – эозинофилия

Снижение количества нейтрофилов – нейтропения, повышение – нейтрофилия. Если в периферической крови увеличивается содержание молодых форм гранулоцитов, говорят о сдвиге лейкоцитарной формулы влево.

Снижение лимфоцитов – лимфопения, повышение – лимфоцитоз

Снижение моноцитов – моноцитопения, повышение – моноцитоз

Снижение тромбоцитов – тромбоцитопения, повышение – тромбоцитоз.

Пример оценки гемограммы .

Ребенку 5 день жизни.

Нв – 150 г/л, эритроциты – 510 12 /л, ретикулоциты – 0,5%, лейкоциты – 1210 9 /л, эозинофилы – 1%, нейтрофилы палочкоядерные – 4%, нейтрофилы сегментоядерные – 41%, лимфоциты – 45%, моноциты – 9%, тромбоциты –10 9 /л, СОЭ – 5 мм/ч

Оценка. Эритрограмма. Ц.п.=(150х0,3):50 = 0,9

Физиологический эритроцитоз новорожденного, ц.п., содержание ретикулоцитов в норме.

Лейкограмма. Физиологический лейкоцитоз новорожденного, соотношение нейтрофилов и лимфоцитов можно определить как «первый перекрест» в 5 дней Содержание эозинофилов, моноцитов в пределах нормы.

Заключение. Нормальная гемограмма здорового ребенка в 5 дней.

В период внутриутробной жизни плода выделяют 3 периода кроветворения. Однако различные его этапы не строго разграничены, а постепенно сменяют друг друга.

Впервые кроветворение (первый его этап) обнаруживается у 19­-дневного эмбриона в кровяных островках желточного мешка.

Появляются начальные примитивные клетки, содержащие гемоглобин и ядро, - мегалобласты. Этот первый кратковременный период гемопоэза, преимущественно эритропоэза, носит название внеэмбрионального кроветворения.

Второй (печеночно-селезеночный) период начинается после 6 нед. и достигает максимума к 5-му месяцу внутриутробного развития человека. Сначала гемопоэз происходит в печени и из всех процессов гемопоэза наиболее выражен эритропоэз и значительно слабее - лейко- и тромбоцитопоэз. Мегалобласты постепенно замещаются эритробластами. На 3-4-м месяце внутриутробной жизни в гемопоэз включается селезенка. Наиболее активно как кроветворный орган она функционирует с 5-го по 7-й месяц развития. В ней осуществляется эритроцито-, гранулоцито- и мегакариоцитопоэз. Активный лимфоцитопоэз возникает в селезенке позднее - с конца 7-го месяца внутриутробного развития.

На 4-5-м месяце внутриутробного развития начинается третий (костномозговой) период кроветворения, который постепенно становится определяющим в продукции форменных элементов крови.

К моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функцию образования лимфоцитов. Кроветворение происходит почти исключительно в костном мозге.

Соответственно различным периодам кроветворения (эмбриональному, плодному селезеночно-печеночному и костномозговому) существует три разных типа гемоглобина: эмбриональный (НЬР), фетальный (HBF) и гемоглобин взрослого (НЬА). Эмбриональный гемоглобин (НЬР) встречается лишь на самых ранних стадиях развития эмбриона. Уже на 8 -10-й неделе беременности у плода 90 - 95% составляет HBF, и в этот же период начинает появляться НЬА (5 - 10%). При рождении количество фетального гемоглобина варьирует от 45 до 90%. Постепенно HBF замещается НЬА. К году остается лишь 15% HBF в составе общего гемоглобина эритроцитов, а к 3 годам коли­чество его не должно превышать 2%. Типы нормального гемоглобина отличаются между собой аминокислотным составом и сродством к кислороду.

Существуют также многочисленные аномальные типы гемоглобинов, которые передаются по наследству. Общей характеристикой заболеваний, связанных с генетически предопределенной аномалией гемоглобина, является наклонность эритроцитов, несущих патологический гемоглобин, к гемолизу. В этом случае развиваются гемолитические анемии.

Еще по теме Понятие об эмбриональном кроветворении.:

  1. Хорионкарцинома в сочетании с тератомой или эмбриональным раком
  2. ОПЛОДОТВОРЕНИЕ И РАННИЕ СТАДИИ ЭМБРИОНАЛЬНОГО РАЗВИТИЯ ЧЕЛОВЕКА
  3. Повышение оплодотворяемости, профилактика эмбриональной смертности, перинатальной патологии с использованием гонадотропинов и гонадолиберинов